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Abstract 

Antenna apertures that are tapered for sidelobe control can also be parsed into 
subapertures for Direction of Arrival (DOA) measurements.  However, the aperture 
tapering complicates phase center location for the subapertures, knowledge of which is 
critical for proper DOA calculation.  In addition, tapering affects subaperture gains, 
making gain dependent on subaperture position.  Techniques are presented to calculate 
subaperture phase center locations, and algorithms are given for equalizing subapertures’ 
gains.  Sidelobe characteristics and mitigation are also discussed. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
authors. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 
The ability of a radar system to make Direction-of-Arrival (DOA) measurements, 
especially of moving targets, requires the ability to generate multiple antenna beams and 
compare responses from the collection.  Techniques for this are well established in the 
literature.  When more than two receive antenna beams are required along any one axis, 
the typical antenna architecture is to use distinct antenna subapertures with separated 
phase centers in a phase-monopulse configuration.  We note that the IEEE Standard on 
Radar Definitions1 describes monopulse as “A radar technique in which information 
concerning the angular location of a target is obtained by comparison of signals received 
in two or more [emphasis added] simultaneously antenna beams.” 

We also generally desire low sidelobe responses from the antenna, including its main 
reference beam, and to some extent even any other beams the antenna may generate in 
order to make its DOA calculations.  Low sidelobe response generally requires beam 
shaping via antenna aperture tapering. 

We will assume herein that we are dealing with a monostatic antenna configuration, 
wherein the same overall aperture is used for transmit and receive signals.  We assume 
that the transmit signal will use the entire aperture, but the receive signal is collected by 
subapertures, wherein the subapertures are parsed from the larger overall sum aperture.  
That is, the sum of the individual receive subapertures equals the transmit aperture.  This 
architecture complicates the nature of the receive subapertures in that they inherently 
have different characteristics, perhaps in beamwidth, gain, or both. 

Nevertheless, of ultimate interest to the subsequent signal processing are the locations of 
the phase centers of the various subapertures, and the gains imparted to the subapertures’ 
received signals.  Knowledge of these is required for optimal DOA calculations. 

We offer as background for this report several other previously published reports. 

SAND2013-10635 describes calculating a phase center for a dish reflector 
antenna.2 

SAND2015-2310 making DOA measurements from multi-subaperture antennas 
with uniform weighting.3 

SAND2015-2311 describes the limits of null widths in multi-subaperture 
antennas.4 

SAND2015-4113 describes designing a 3-beam amplitude monopulse antenna.5 

Subsequently, herein we discuss locating the phase centers of uneven aperture 
illuminations, and of subapertures in overall tapered apertures.  We confine our 
discussion to one-dimensional analysis and examples.  We furthermore ignore many 
aspects of practical antenna design such as mutual coupling in array antennas, etc.  
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“The scientists of today think deeply instead of clearly. One must be sane to think clearly, 
but one can think deeply and be quite insane.” 

-- Nikola Tesla 
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2 Phase Center of Arbitrary Aperture Illumination 
We begin by considering a linear aperture with illumination 

( )w z  = normalized (domain) aperture illumination function, (1) 

where the illumination function is limited to a finite extent such that 

( ) ( ) ( )rect
x x

w z dz w z z dz
−∞ −∞

=∫ ∫ , (2) 

where 

( )
1 1 2

rect 1 2 1 2
0

z
z z

else

 <
= =



. (3) 

We define the rect( ) function this way to make later mathematics in this report more 
precise. 

We now define a point on the linear axis, specified as the x axis, about which we rotate 
the aperture as 

0x  = rotation point of the aperture. (4) 

We furthermore define 

1x  = physical center the aperture, and 
L  = actual length of the aperture, (5) 

This geometry is identified in Figure 1.  The far-field pattern can then be calculated as 

( )
( )1

0

1

2 sin2
1

2

x L j x x

x L

x xG w e dx
L

π θ
λθ

+ − −

−

− =  
 ∫ , (6) 

where 

θ  = Direction of Arrival (DOA) incidence angle, and 
λ  = wavelength of the sinusoidal signal. (7) 
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Figure 1.  One-dimensional aperture geometry definitions.  The aperture illumination is 
essentially the current distribution within the finite aperture. 

Note that this is just the well-known axiom that the far-field antenna pattern is essentially 
a Fourier transform of the aperture illumination function. 

In general, ( )G θ is complex-valued.  Our concern here is with a phase change in ( )G θ  

as we vary θ .  We desire the value of 0x  for which there is no phase change in ( )G θ  
as θ  is varied.  The value of 0x  that accomplishes this is the “phase center” of the 
aperture. 

We now examine two example cases. 

2.1 Uniform Aperture Illumination 

Consider the case where we have a uniformly illuminated aperture described by 

( ) ( )rectw z z= . (8) 

In this case, then the far-field pattern is given by 

( )
( )1

0

1

2 sin2

2

x L j x x

x L
G e dx

π θ
λθ

+ − −

−

= ∫ , (9) 

where 

θ  = Direction of Arrival (DOA) incidence angle,  (10) 

which can be solved and simplified to 

x
x0x1

L

L/2
θ
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( )
( )1 0

2 sin

sinc sin
j x x LG e L
π θ
λθ θ

λ

− −  =  
 

, (11) 

where 

( ) ( )sin
sinc

z
z

z
π

π
= . (12) 

We identify the phase term as the exponent of the exponential factor, which shows a 
dependence on angle θ  whenever 0 1x x≠ .  Consequently, the far-field pattern phase is 
independent of rotation angle θ  when 0 1x x= .  Therefore, we identify the phase center 
for this aperture as 

1pcx x= . (13) 

The aperture illumination and the phase center location for this example are illustrated in 
Figure 2, where we have arbitrarily presumed 1 0x = . 

We may furthermore stipulate that Fourier properties suggest that any even-symmetric 
and real ( )w z  will result in 1pcx x= . 

 
Figure 2.  Uniform aperture illumination. 
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2.2 Linear-Gradient Aperture Illumination 

Now consider an aperture illumination of the form 

( ) ( ) ( )1 rectw z z zα= +  (14) 

where 

α  = constant such that 0 1α< < . (15) 

Note that this is not an even function, and definitely not uniform.  In this case, the far-
field pattern is then given by 

( )
( )1

0

1

2 sin2
1

2
1

x L j x x

x L

x xG e dx
L

π θ
λθ α

+ − −

−

 −  = +   
  

∫ . (16) 

With no loss of generality, we will assume that 1 0x = .  We will then rewrite the far-field 
pattern as 

( ) 0

2 sin 2 sin2

2
1

Lj x j x

L
G e x e dx

L

π θ π θ
λ λαθ

−

−

 = + 
 ∫ . (17) 

This can be solved to yield 

( ) 0

2 sin

2

sinc sin

sin sin cos sin

2 sinsin

j x

LL

L LG e
Lj

LL

π θ
λ

θ
λ

θ π θ π θ
α λ λ

π θπ θ λλ

  
    

      =             − −                 

. (18) 

Recall that we desire to identify a phase center that is a single constant value for 0x  that 
results in a phase that is independent of angle θ .  We may solve for the phase as 

( )( ) 0
1 2 sinPhase atan cot sin

2 sin

LG x
L

a π θθ π θ
λ λπ θ

λ

  
       = − +                 

. 

 (19) 
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We can solve for a position 0x  that causes the phase to go to zero, and designate this as 
the phase center of the aperture.  Doing so yields the phase center location as 

1atan cot sin
2 sin 2 sin

pc
Lx

L
λ a p θ

p θ λ p θ
λ

  
  −      = −                 

. (20) 

We note that phase center pcx  is not a constant, and in fact actually depends on DOA 

angle θ .  No single value of pcx  causes the phase to go to zero for all angles θ .  That is, 
the phase center moves as a function of DOA angle θ .  In the neighborhood of the center 
of the beam where 0θ ≈  we may nevertheless choose a constant pcx  that minimizes 

dependence of ( )G θ on angle θ  by setting the derivative of Eq. (19) to zero and solving 
for the 0x  that causes a nearly constant phase in the neighborhood of 0θ = .  We identify 
the derivative of the phase in the direction of 0θ =  as 

( )( ) ( )0
0

lim Phase 12
6

d G L x
dθ

πθ a
θ l→

  = − − 
 

. 

 (21) 

Consequently, we designate the phase center as the value of 0x  that causes this to go to 
zero, namely 

12pc
Lx α

= . (22) 

Essentially, the phase slope of ( )G θ  as a function of θ  is zero with this value for 0x  at 
the angle 0θ = . 

We observe that the non-uniform aperture illumination in Figure 3  has the phase center 
indicated, as calculated above.  Note that it is off-center with respect to the aperture 
center at 1 0x = .   Furthermore, it is shifted in the direction of heavier weighting of the 
aperture, as we might expect. 

The far-field antenna pattern is illustrated in Figure 4, and the received signal phase as a 
function of rotation position and incidence DOA angle is shown in Figure 5.  Note that 
rotating about the nominal phase center exhibits a fairly constant phase value within the 
mainlobe of the far-field pattern. 
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Figure 3.  Example non-uniform aperture illumination. 

 
Figure 4.  Far-field antenna pattern for illumination of Figure 3. 
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Figure 5.  Received signal phase versus incidence DOA angle for various rotation positions 0x .  The 

optimum 0x , that which is most flat at a zero DOA angle, indicates the phase center. 

 

2.3 Comments 

We offer the following additional comments. 

• More complicated aperture illumination functions might cause us to use numerical 
techniques to estimate the phase center location. 

• More complicated aperture illumination functions will generally have phase 
centers that are DOA angle dependent.  However, some locations are more well-
behaved than others, in minimizing phase variations over DOA angles of interest. 

• Phase centers will be pulled in the direction of more weighting in the aperture. 
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“The value of an idea lies in the using of it.” 
-- Thomas A. Edison 
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3 Subapertures in a Tapered Sum Pattern 
We now build upon the previous section and examine a larger aperture composed of 
contiguous but non-overlapping subapertures, wherein the larger aperture has a specified 
taper function for sidelobe control of the overall combined, or sum, antenna beam. 

We now modify and add the following definitions. 

apL  = physical length of the overall aperture, 

( )apw x  = illumination (taper) function of the overall aperture, 

i  = index of phase centers, ( ){ }0,1,2,..., 1i I∈ −  , 
I  = number of subapertures, 
1,ix  = physical center of the ith subaperture, 

,pc ix  = phase center of the ith subaperture, 

iL  = physical length of the ith subaperture. (23) 

We will assume that ( )apw x  is real and even, and nonzero over the interval [ ]0.5,0.5− .  
Without loss of generality, we will also assume that the overall aperture is physically 
centered at zero.   

The contiguous but non-overlapped nature of the subapertures is then such that 

1
1,

0
rect rect

I
i

ap ii

x xx
L L

−

=

  − 
=       
∑ . (24) 

This basically means that they don’t overlap, and there are no gaps.  The far-field pattern 
for the overall aperture, also referred to as the “sum” beam, is calculated as 

( )
2 sinj x

ap ap
ap

xG w e dx
L

p θ
λθ

∞ −

−∞

 
=   

 
∫ , (25) 

whereas the far-field patterns of the individual subapertures are calculated as 

( )
2 sin

1,rect
j xi

i ap
i ap

x x xG w e dx
L L

p θ
λθ

∞ −

−∞

  − 
=           
∫ . (26) 

Note that the quantity in the square brackets represents the taper function of the 
individual subapertures.  These individual subaperture tapers are real but not by 
themselves even. 
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Interestingly, a consequence of this is that the sum of the individual subaperture beams 
equals the overall sum pattern beam shape.  That is 

( ) ( )
1

0

I

i ap
i

G Gθ θ
−

=
=∑ . (27) 

Recall that we have not yet specified the lengths of the individual subapertures; merely 
that they add up to the overall aperture length.  Now we examine several specific cases. 

 

3.1 Uniform Width Subapertures 

We now assume that all subapertures have equal physical length.  That is 

i kL L= , for all subaperture indices ,i k  . (28) 

We illustrate with several examples. 

For all subsequent examples, unless otherwise indicated, we shall assume an overall 
aperture weighting defined by a Taylor window with −30 dB sidelobes and 5n = .  
Furthermore, we shall assume 

apL  = 1 m, and 
λ  = 0.02 m. (29) 

Subaperture phase centers are calculated using numerical integration. 
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3.1.1 Three Subapertures 

We illustrate with an example that divides the aperture into three equal-length 
subapertures.  Relevant measures are given in Table 1.  Figure 6 plots the subapertures 
and their phase centers.  Figure 7 plots the one-way patterns.  Figure 8 illustrates the two-
way pattern, with the transmitted signal using the sum pattern.  We observe that for this 
example there is nearly a 6 dB gain difference between center and outer subapertures.   
 

Table 1.  Subaperture characteristics for 3 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.3333 −0.2966 0.3333 −11.8548 

1 0 0 0.3333 −6.2111 

2 0.3333 0.2966 0.3333 −11.8548 

  

 

 
Figure 6.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 7.  One-way beam patterns for overall aperture and subapertures. 

 

 
Figure 8.  Two-way beam patterns for overall aperture and subapertures. 
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3.1.2 Four Subapertures 

We illustrate with an example that divides the aperture into 4 equal-length subapertures.  
Relevant measures are given in Table 2.  Figure 9 plots the subapertures and their phase 
centers.  Figure 10 plots the one-way patterns.  Figure 11 illustrates the two-way pattern, 
with the transmitted signal using the sum pattern.  We observe that for this example there 
is nearly a 7 dB gain difference between center and outer subapertures.   
 

Table 2.  Subaperture characteristics for 4 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.375 −0.3524 0.25 −16.0446 

1 −0.125 −0.1168 0.25 −9.3113 

2 0.125 0.1168 0.25 −9.3113 

3 0.375 0.3524 0.25 −16.0446 

 

 
Figure 9.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 10.  One-way beam patterns for overall aperture and subapertures. 

 
Figure 11.  Two-way beam patterns for overall aperture and subapertures. 
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3.1.3 Five Subapertures 

We illustrate with an example that divides the aperture into 5 equal-length subapertures.  
Relevant measures are given in Table 3.  Figure 12 plots the subapertures and their phase 
centers.  Figure 13 plots the one-way patterns.  Figure 14 illustrates the two-way pattern, 
with the transmitted signal using the sum pattern.  We observe that for this example there 
is nearly a 9 dB gain difference between center and outer subapertures.   
 

Table 3.  Subaperture characteristics for 5 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.4 −0.3856 0.2 −19.1214 

1 −0.2 −0.1913 0.2 −12.5004 

2 0 0 0.2 −10.3295 

3 0.2 0.1913 0.2 −12.5004 

4 0.4 0.3856 0.2 −19.1214 

 
Figure 12.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 13.  One-way beam patterns for overall aperture and subapertures. 

 
Figure 14.  Two-way beam patterns for overall aperture and subapertures. 
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3.2 Uniform Gain Subapertures 

We now assume that all subapertures have equal gain at the center of their patterns.  That 
is 

( ) ( )0 0i kG G= , for all subaperture indices ,i k  . (30) 

To accomplish this, we will give up the constraint of equal widths. 

We illustrate with several examples. 

For all subsequent examples, unless otherwise indicated, we shall assume an overall 
aperture weighting defined by a Taylor window with −30 dB sidelobes and 5n = .  
Furthermore, we shall assume 

apL  = 1 m, and 
λ  = 0.02 m. (31) 

Subaperture phase centers are calculated using numerical integration. 
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3.2.1 Three Subapertures 

We illustrate with an example that divides the aperture into three equal-gain subapertures.  
Relevant measures are given in Table 4.  Figure 15 plots the subapertures and their phase 
centers.  Figure 16 plots the one-way patterns.  Figure 17 illustrates the two-way pattern, 
with the transmitted signal using the sum pattern. 

 

Table 4.  Subaperture characteristics for 3 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.3050 −0.2595 0.39 −9.5425 

1 0 0 0.2199 −9.5425 

2 0.3050 0.2595 0.39 −9.5425 

 

 

 
Figure 15.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 16.  One-way beam patterns for overall aperture and subapertures. 

 
Figure 17.  Two-way beam patterns for overall aperture and subapertures. 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-60

-50

-40

-30

-20

-10

0

10

DOA angle - (λ/L)

m
ag

ni
tu

de
 - 

dB
c

 

 
sum beam
subap 0
subap 1
subap 2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-60

-50

-40

-30

-20

-10

0

10

DOA angle - (λ/L)

m
ag

ni
tu

de
 - 

dB
c

 

 
sum beam
subap 0
subap 1
subap 2



- 28 - 

 

3.2.2 Four Subapertures 

We illustrate with an example that divides the aperture into 4 equal-gain subapertures.  
Relevant measures are given in Table 5.  Figure 18 plots the subapertures and their phase 
centers.  Figure 19 plots the one-way patterns.  Figure 20 illustrates the two-way pattern, 
with the transmitted signal using the sum pattern. 

 

Table 5.  Subaperture characteristics for 4 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.3354 −0.2994 0.3291 −12.0412 

1 −0.0854 −0.0828 0.1709 −12.0412 

2 0.0854 0.0828 0.1709 −12.0412 

3 0.3354 0.2994 0.3291 −12.0412 

 

 
Figure 18.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 19.  One-way beam patterns for overall aperture and subapertures. 

 
Figure 20.  Two-way beam patterns for overall aperture and subapertures. 
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3.2.3 Five Subapertures 

We illustrate with an example that divides the aperture into 5 equal-gain subapertures.  
Relevant measures are given in Table 6.  Figure 21 plots the subapertures and their phase 
centers.  Figure 22 plots the one-way patterns.  Figure 23 illustrates the two-way pattern, 
with the transmitted signal using the sum pattern. 

 

Table 6.  Subaperture characteristics for 5 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center 
(m) 

Phase Center 
(m) 

Width  
(m) 

Gain  
(dBc) 

0 −0.3558 −0.3265 0.2885 −13.9794 

1 −0.1382 −0.1351 0.1466 −13.9794 

2 0 0 0.1298 −13.9794 

3 0.1382 0.1351 0.1466 −13.9794 

4 0.3558 0.3265 0.2885 −13.9794 

 
Figure 21.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor 
window with nbar=5. 
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Figure 22.  One-way beam patterns for overall aperture and subapertures. 

 
Figure 23.  Two-way beam patterns for overall aperture and subapertures. 
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3.3 Comments 

We offer the following comments. 

• The width of the mainlobe responses from the individual subaperture beams will 
always be wider than the width of the mainlobe response of the sum beam. 

• For a tapered sum beam with segmented subapertures, uniform-width 
subapertures will have different maximum gains. 

• For a tapered sum beam with segmented subapertures, uniform-maximum-gain 
subapertures will have different physical widths. 

• Tapering the sum beam will draw the phase centers of the individual subapertures 
inwards, towards the center of the overall aperture. 

• Subaperture pattern sidelobes are largely a function of the hard edges at the 
subaperture boundaries. 

• Uniform-maximum-gain subapertures will have the phase centers of their 
individual subapertures moved inwards somewhat from those of uniform-width 
subapertures, towards the center of the overall aperture. 

• Subapertures with indices i  and 1I i− −  are mirror images of each other, and will 
each have the same shapes of their beam patterns; same in magnitude but not 
necessarily in phase.  This follows from the Fourier property that the transform of 
a real function will have symmetry in the magnitude of its spectrum.  This is why 
some subapertures are not visible in some of the previous plots; they are basically 
covered up by other subapertures’ responses. 

• Uniform-width subapertures are not guaranteed to yield uniformly-spaced phase 
centers, especially when 3I > .  The amount of phase center shift will depend on 
the local subaperture weighting function. 
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4 Tapered and Overlapped Subapertures  
We now loosen the constraints of the earlier section and allow subapertures to overlap.  
The purpose is to allow tapering of the subapertures to facilitate subaperture beam 
sidelobe reduction.  Sidelobe control in subaperture architectures are discussed in an 
earlier report by Doerry.6  Accordingly we define 

( )iw x  = the taper function of the ith subaperture. (32) 

We will assume that the subaperture tapers ( )iw x  are each nonzero but still real over the 

interval [ ]0.5,0.5− , but unlike the overall aperture illumination ( )apw x , the subaperture 
tapers need not be even. 

We stipulate, however, that the sum of all the subaperture tapers (suitably shifted) equals 
the overall aperture taper function, that is 

1
1,

0

I
i

ap i
ap ii

x xxw w
L L

−

=

  − 
=       
∑ . (33) 

The far-field patterns of the individual subapertures are now calculated as 

( )
2 sinj xi

i i
i

x xG w e dx
L

π θ
λθ

∞ −

−∞

 −
=  

 
∫ . (34) 

For all subsequent examples, unless otherwise indicated, we shall assume an overall 
aperture weighting defined by a Taylor window with −30 dB sidelobes and 5n = .  
Furthermore, we shall assume 

apL  = 1 m, and 
λ  = 0.02 m. (35) 

Subaperture phase centers are calculated using numerical integration. 

Figure 24 essentially duplicates the example of Section 3.2.1, with three constant-gain 
subapertures, albeit with a more expanded view of the far-field beam patterns. 

Figure 25 takes the tapers of Figure 24 and feathers the transition (boundary) regions 
between the subapertures.  Each feathering is over an interval of 1/6 of the overall 
aperture length. 

We note that feathering the subapertures will affect phase center locations somewhat. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 24.  (a) subaperture illumination function, (b) one-way antenna far-field patterns, (c) two-way 
far-field patterns.  Overall aperture weighting is −30 dB Taylor window with nbar=5. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 25.  (a) subaperture illumination function, (b) one-way antenna far-field patterns, (c) two-way 
far-field patterns.  Overall aperture weighting is −30 dB Taylor window with nbar=5. 
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Comments 

We offer the following comments. 

• There are three principal regions of interesting behavior, which we illustrate in 
Figure 26.  These are 

1. Within the mainlobe of the sum beam,  

2. Outside the mainlobe of the sum beam, but inside the mainlobe of the 
individual subaperture beams, and 

3. In the sidelobe region of the individual subaperture beams. 
 

• As one might expect, any additional tapering of the individual subapertures will 
mainly affect the sidelobes of the subaperture beam patterns (region #3), and not 
the nature of the two-way response within the mainlobe of the subaperture beams 
(regions #1 and #2). 

• Two-way beam pattern response, including sum pattern sidelobes, within the 
subaperture mainlobes (regions #1 and #2) will not be affected by additional 
subaperture tapering. 

• Reducing two-way pattern sidelobes within the subaperture mainlobe regions 
(region #2) can only be accomplished by reducing the sidelobes of the sum 
pattern response.  Figure 27 illustrates the previous examples but with a −50 dB 
Taylor ( 7n = ) weighting function for the overall aperture. 

• The question of “How far down do sidelobes need to be?” is a system design 
question that depends on the allowable likelihood of confusing energy or false 
targets.7 
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Figure 26.  Major regions of interest for sidelobe responses.  The plot is the same as Figure 25 (c).  
 
Region 1 - Within the mainlobe of the sum beam,  
Region 2 - Outside the mainlobe of the sum beam, but inside the mainlobe of the individual 
subaperture beams, and 
Region 3 - In the sidelobe region of the individual subaperture beams. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 27.  (a) subaperture illumination function, (b) one-way antenna far-field patterns, (c) two-way 
far-field patterns.  Overall aperture weighting is −50 dB Taylor window with nbar=5. 
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5 Brief Comments on Performance  
Recapping, subapertures in antenna arrays are used to estimate Direction-Of-Arrival 
(DOA).   The subaperture weighting functions affect both the subarray gain and the 
relative position of phase centers.  In DOA estimation, the performance is a function of 
the Signal-to-Noise Ratio (SNR) and the (projected) separation distance between phase 
centers, B .  In fact the angle estimation noise depends on these as 

1
B snrθs ∝   (36) 

The SNR, is in turn a function of the product of the transmit and receive antenna gains 
(plus any additional processing gain between subarrays for the DOA estimation).  As we 
have just seen in the previous analysis, the subaperture weightings affect both the gains 
and the phase center separations.  Therefore, the radar designer needs to account for these 
in performing the trade-off between different subaperture weightings. 
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“There's a way to do it better - find it.” 
-- Thomas A. Edison 
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6 Conclusions 
We summarize herein the following key points. 

• Uneven subaperture tapering will shift the phase center away from the center of 
the subaperture, and generally in the direction with greater weighting. 

• Subaperture phase center spacing is not guaranteed to be even, even with equal-
width subapertures. 

• Subaperture gain will not necessarily be identical for all subapertures, although 
subapertures can be defined to specifically make them so, albeit with other 
consequences. 
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“Opportunity is missed by most people because it is dressed in overalls  
and looks like work.” 
-- Thomas A. Edison 
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